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Four auxiliary classes of benzenoids are introduced, and formulas are given 
for their number of KekuH structures (K). An enumeration method for K of 
different important classes of benzenoids is illustrated by examples. The utilization 
of essentially disconnected benzenoids is a special feature of the method. 
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Ein Be#rag zur Methodik der Bestimmung mOglicher Kekuld-Strukturen 

Es werden Hilfsklassen von benzenoiden Aromaten eingefiihrt und Formeln 
zur zahlenm/igigen Auswertung m6glicher Kekuld-Strukturen angegeben (K). Die 
Auswertungsmethode fiir Kwird an verschiedenen wichtigen Klassen benzenoider 
Verbindungen exemplarisch gezeigt. Die Verwendbarkeit essentiell abgekoppelter 
aromatischer Bauelemente ist eine spezielle Eigenschaft dieser Methode. 

Introduction 

The enumeration of Kekul~ structures of polycyclic aromatic (benze- 
noid) hydrocarbons has been reviewed by Trinajstid [1]. A fairly complete 
bibliography is found elsewhere in this journal [2]. Here Gutman and 
Cyvin [2] pointed out the tremendous acceleration of the research in this 
field during the last few years. 

Gutman [3] and later Gutman and Cyvin [-2, 4] showed the usefulness 
of introducing auxiliary classes when studying the number of Kekul~ 
structures. This is also an essential part of the enumeration techniques 
described in the present work. In addition, a special feature of the present 
method is the utilization of essentially disconnected benzenoids. 

4* 
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Let the number of KekulO structures for a benzenoid B be denoted 
K{B}. Furthermore, let BI"B2 denote the essentially disconnected benze- 
noid consisting of the fragments B~ and B2. This means that B~ and B2 are 
joined by essentially single bonds, i.e. bonds which are single in all Kekuld 
structures. Then one has K{B1.B2} = K{B1} K{B2}. 

Results and Discussion 

Auxiliary Classes of Benzenoids 

Gutman and Cyvin [2, 4] have defined A(n, m,/) for 0 ~< l <~ n as a 
multiple zigzag chain, A (n, m), augmented by a row of I hexagons. For the 
extremal values of I one has by virtue of definition: 

A (n, m, n) = A (n, m + 1), A (n, m, 0) = A (n, m). 

Here we will apply these classes with m = 1 and m = 2. In addition, we 
define some related classes designated B(n, 2,/) and B ( n , 2 , - / )  for 
O <~ l <~ n. 

The Class A(n, 1,/) 

For n = 1 the class A(n, m, l) reduces to one single straight (linear 
acene) chain of n hexagons augmented by a row of 1 hexagons; cf. Fig. 1. 

[ 

Fig. 1. The benzenoid class A(n, 1,/), depicted for n = 4, l = 2 

For the extremal values l =  n and 0 the benzenoids reduce to a 
parallelogram and a single chain, respectively; 

A (n, 1, n) = A (n, 2) = L (n, 2), A (n, 1,0) = A (n) = L (n). 

An explicit formula for the number of Kekuld structures of A(n, 1,/) 
for arbitrary values of n and lis known [2, 4]; it may be written in the form 

K { A ( n , l , l ) } = ( n +  l ) ( l+ 1 ) - ( l + 2 1 ) ' ,  l<~n (1) 
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The Class A(n, 2,/) 

Figure 2 shows the definition of A(n, 2,/). 
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L t > 0  

Fig. 2. The classes A(n, 2,/) and B(n, 2,/); see the text for a special definition of 
B (n, 2, 0) 

Also in this case an explicit formula for the K number has been given 
previously I-2, 4]; we write it by means of binomial coefficients in the 
following way. 

2 3 ' 
l <~ n (2) 

The Class B (n, 2, l) 

Figure 2 also shows B(n, 2,/) for l > 0. For l = n we arrive at the 
rectangle- or hexagon-shaped benzenoid with three tier chains [5-7]. For 
l - - 0  it is not expedient to define B(n, 2, 0) merely by omitting the l 
hexagons, since this gives a non-Kekulkan structure. We remove also one 
of the end hexagons of the (n + 1)-row and attain at 

B(n,2,0) = A(n, 2,0) = A(n, 2) = L(n, 2). 

We wish a formula for the Knumber  of B(n, 2,/) with arbitrary values ofn  
and ~l. By means of the well-known method of partitioning of the 
benzenoid [8] we easily obtain the recurrence formula 

K{B(n, 2, /)} = K { B ( n -  1 , 2 , / -  1)} +K{A(n,2 , / )} ;  /~> 1 (3) 

Together with the initial condition K{B(n, 2, 0)} = K{A(n, 2, 0)} we arrive 
at the summation formula 

l 

K{B(n, 2,/)} = 2 K { A ( n - l + i ,  2, i)}; I>10 (4) 
i = 0  
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On combining Eq. (4) with (2) we attained at 

1 E K{B(n, 2,/)} = ~ (n - / )  (n - l + 1 ) +  y, ( i+ 1) 
i=0 

+ n - I +  ~, (i + 1)2 + ~ ( i +  1) 3 
i=0 3 i=0 

(5) 

By tedious, but elementary computations this expression was simplified to 

l<~n (6) 

The Class B (n, 2, - l) 

We introduce an auxiliary class of  benzenoids denoted B (n, 2, - / ) .  It 
consists of  two rows; (1) one ofn hexagons and (2) one of(n + 1) hexagons 
with the hexagon number l (starting from l = 0) omitted. For the sake of 
clarity we have depicted the whole series of B (4, 2, - / )  for l = 0, 1, . . . ,  4 
in Fig. 3. For l = 0 the appropriate benzenoid, viz. B (n, 2, 0), coincides 

B(4,2,0) ~ K = 15 

B(4,2,-I) ~ K = 24 

B(4,2,-2) ~ K = 27 

B(4,2,-3) ~ K = 24 

B(4,2,-4) K = 1 5  

Fig. 3. The benzenoids B(n, 2, - / )  for n = 4 and l = 0, 1, 2, 3, 4 
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with the member of the preceding series (l ~> 0) denoted by the same 
symbol. We have obviously the symmetry property 

B(n, 2, - / )  = B(n, 2 , / -  n). 

By means of the standard techniques [8] it is found 

K{B(n, 2 , - / ) }  -- K{B(n, 2,/)} -K{B(n,  2, I -  1)}; l~> i (7) 

Consequently, with the aid of Eq. (6) 

2 ,, 2 ' 

0 ~< l ~< n (8) 

Simple Example One 

Consider the four-tier zigzag chain of arbitrary length (n hexagons); cf. 
Fig. 4. The method of fragmentation [8] is supposed to be applied n times, 
each time focusing the attention upon the bond marked by a thick arrow 
(Fig. 4). Consequently one obtains altogether 

K{A(n, 4)} = L K{A(n, 1, i)} K{L(i)}. (9) 
i ~ 0  

On inserting the expression from Eq. (1) along with the well known K 
formula for L(i) it is obtained 

This final expression is simpler than the binomial-coefficient form given 
previously by Cyvin I-7]. A polynomial-form of Eq. (10) was first derived 
in a different way by Gutman and Cyvin [2, 4]. 
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A(n,4) 

n 

f 

1 

1 
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n 

A0z,l,n) .L(n) 

A(n,1, n-1).L(n-1) 

A(n,I,1).L(1) 

A(TZ, 1,0) 

Fig. 4. Steps in the enumeration of Kekul~ structures for A(n, 4) 

Simple Example Two 

Consider in the same way the four-tier pentagonal benzenoid desig- 
nated D(2, 3, n), and also referred to as a hexagon with one corner 
removed, 0a(3, 2, n) = 0(2, 3, n) [7]; cf. Fig. 5. Our method gives 

K{D(2, 3, n)} = i K{B(n, 2, - i)} K{L(i)}, (11) 
i=0 

and by means of Eq. (8): 

= ( n + 2 ) ( n + 3 ) 2  3 - - ( n + 2 ) (  n+4 3), (12) 

which is equivalent to the known polynomial-form [7] of this equation. 
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D(2,3,n) 
11 

f 

n 

B(r~, 2, -n) -L(n) 

B(n, 2, 1-n).L(n-1) 

~ ~  ~ B ( n ,  2, 

B(n,2,0) 

-1) .n(1) 

Fig. 5. Steps in the enumeration of Kekuld structures for D(2, 3, n) 

Simple Example Three 

The five-tier zig-zag chain, A (n, 5), is depicted in Fig. 6. The present 
method leads to 

K{A(n, 5)} = i K{A(n, 2, i)} K{L(i)}. (13) i=0 
With the aid of Eq. (2) and a computation as in the preceding examples it 
was arrived at 

K{A(n, 5)} ( n + 2 ) ( n  2 2)2 [ (n  2 3 
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A(n,5) R(3,n) 

n n 

Fig. 6. The benzenoids A(n, 5) and R(3, n), pertaining to the simple examples three 
and four, respectively; the method of fragmentation starts with the bond marked 

by an arrow 

This formula was first derived in a polynomial-form by Gutman and Cyvin 
E2, 4]. 

Simple Example Four 

Another five-tier benzenoid, R(3, n), is shown in Fig. 6. In this case one 
finds 

K{R(3, n)} = ~ K{B(n, 2, i)} K{L(i)}, (15) 
i=0 

where we need Eq. (6). By a computation as in the preceding examples we 
arrived at 

1 

240 
- - -  (n + 1) (n + 2) 2 (n + 3) (7 n 2 + 23 n + 20).  

(16) 

It should not be surprising to find relations between the K values of some 
of the benzenoids treated above, since also the auxiliary benzenoid classes 
are inter-related. Actually it was found 

n--1 

K{R(3,n)} = ~ K{A(i, 5)} + ~ K{D(2,3,  i)}. (17) 
i=0 i=0 

This relation may be employed in an alternative derivation of Eq. (16). 
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A More Advanced Example 

Here we show an application of  the described method to a benzenoid, 
say H(n), for which the K value has not been achieved by any other 
method previously. It is a six-tier benzenoid as shown in Fig. 7, which also 
indicates the steps of  the partitioning procedure. In this case we have 

H(n) 
n 

B(n,2,n).A(n,l,n) 

(n,2, n-l)-A(n,l, n-l) 

-... ,  

B(n, 2,1) .A(n,l,1) 

B(n, 2,0) ,A(n, 1,0) 

Fig. 7. Steps in the enumeration of Kekulk structures for H(n) 
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K{H(n)} = i K{A(n, 1, i)}K{B(n, 2, i)} 
i = 0  

= i [(n+l)(i+l)-( 2 1 / a L \ n 2  ) q [ (  +2)(i+2)-(n+2'(i+2)1"2 3 

(18) 

In the subsequent computations we made use of 

and 

(i+2) (.+3) (,+~) 
(i + 1) = (n + 1) - (19) 

i=o 2 3 4 ' 

(~+3) (.+4) (.+4) 
(i + 1) = (n + 1) - (20) 

i=o 2 4 5 ' 

i=o 3 6 5 2 4 

It was finally attained at: 

(22) 

~"~"~=(~+2) I(n+5)-~n+3'('+4)2 5 4 

+(~+~)(~+~)+~(~)(,+4)1(.+~)(,+2 ~ 3 ~ 34)1 
1 

720 
(n + 1)(n + 2)3(n + 3)(13n 2 + 37n + 30). (23) 

Conclusion 

Two classes of zigzag chains are among the examples used to illustrate 
the application of the auxiliary benzenoids introduced in the present work. 
These classes have been studied in general by Gutrnan and Cyvin [2, 4], 
who solved in a different way the two particular problems treated here. 
The virtue of the present method is demonstrated by the more advanced 
example, but the class of  benzenoids treated may seem too special to be of 
real importance. 
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In addition to the zigzag chains the rectangular benzenoids are 
recognized as important classes [9J. Here it is essential to distinguish 
between prolate rectangles, say Ri (with indentation inwards) and oblate 
rectangles, say Rj (with indentation outwards). The case of K{Ri} is 
completely solved [9], while K{Rj} causes serious problems. For the five- 
tier oblate rectangles, viz. Rj(3, n), the present method is applicable. One 
has actually 

K{Rj(3,n)} = i [K{B(n,2, - 0}] 2. (24) 
i = 0  

However, this problem has been solved previously by other methods [5, 7, 
9]. An extension of the present method would make it feasible to attack 
the so far unsolved, difficult problem of the K number of seven-tier oblate 
rectangles, viz. Rj (4, n). 

The applications of the present method are far from exhausted by the 
examples quoted here. Furthermore, there are several ways which suggest 
themselves for extensions of the techniques; they would undoubtedly 
increase the field of applicability to a great extent. One obvious extension 
is the exploitation of K{A(n, 3,/)}, for which Gutman and Cyvin [2, 4] 
have given an explicit formula. In this connection additional auxiliary 
benzenoids as B (n, 3,/) and B (n, 3, - / )  may be defined in analogy with 
B(n, 2,/) and B(n, 2, - / ) ,  respectively. 
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